Acta Crystallographica Section E

Structure Reports
Online
ISSN 1600-5368

Hong-Xing Wang,* Hong-Fei Wu, Ren-Qing Gao, Feng-Ying Geng and Ying-Jie Li

Department of Chemistry, College of Sciences, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail:
hongxing_wang@hotmail.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.032$
$w R$ factor $=0.076$
Data-to-parameter ratio $=17.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

Chloro(2-\{[N-(4-methoxybenzyl)methylamino]-methyl\}ferrocene- $\kappa^{2} N, C^{1}$)(triphenylphosphine- κ P)palladium(II)

In the title compound, $\quad\left[\mathrm{PdCl}\left\{\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}\right)\right\}\right.$ $\left.\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\right]$ or $\left[\mathrm{FePd}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}\right) \mathrm{Cl}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\right]$, the $\mathrm{Pd}^{\mathrm{II}}$ atom is in a slightly distorted square-planar environment. The dihedral angle between the two cyclopentadienyl rings of the ferrocenyl group is $6.4(1)^{\circ}$.

Comment

Cyclopalladation of N-donor ligands, especially those bearing a ferrocenylimino group, have been extensively studied due to their applications in organic synthesis such as in the Heck reaction (Iyer \& Ramesh, 2000) and the Suzuki coupling reaction (Weissmann \& Milstein, 1999), etc. As a part of our ongoing investigations of cyclometallation of N-methyl $-N$ ferrocenylmethylbenzyamines (Wang et al., 2006), a new compound, (I), has been prepared and we report its crystal structure here.

(I)

In the compound (I), atom Pd 1 is in a slightly distorted square-planar environment (Fig. 1 and Table 1). Atoms Pd1, $\mathrm{P} 1, \mathrm{~N} 1, \mathrm{Cl} 1$ and C 6 deviate from the mean plane through them by $\quad 0.0096(7), \quad-0.1110(9), \quad-0.1251(10), \quad 0.0963(9)$, 0.1303 (11) \AA, respectively. The dihedral angle between the two cyclopentadienyl rings of the ferrocenyl group is $6.4(1)^{\circ}$. The substituted cyclopentadienyl plane forms a dihedral angle of $82.3(1)^{\circ}$ with the $\mathrm{C} 14-\mathrm{C} 19$ benzene ring. Except for an intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interaction (Table 2), no hydrogen bonds are observed in the crystal structure.

Experimental

A solution of sodium tetrachloropalladate(II) ($290 \mathrm{mg}, 1 \mathrm{mmol}$) in methanol (15 ml) was added dropwise to a stirred solution of $\{[(\mathrm{N}-$ methyl- N-4-methoxybenzyl)amino]methylfferrocene (350 mg , 1 mmol) and sodium acetate ($82 \mathrm{mg}, 1 \mathrm{mmol}$) in methanol (30 ml). The mixture was stirred at room temperature for 4 h . Then triphenylphosphine ($410 \mathrm{mg}, 1.5 \mathrm{mmol}$) was added and the mixture was stirred for another 30 min . The solvent was removed in vacuo and the residue was purified by column chromatography (silica gel, eluant: ethyl acetate / petroleum ether ($333-363 \mathrm{~K}$), 1:3) to give compound (I) (Yield: 80%). Analysis calculated for $\mathrm{C}_{38} \mathrm{H}_{37} \mathrm{ClFe}-$ NOPPd: C 60.66, H 4.96, N 1.86\%; found: C 60.38, H 4.89, N 1.82%.

Received 15 December 2005 Accepted 22 December 2005 Online 7 January 2006

Crystal data

$\left[\mathrm{FePd}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}\right)-\right.$
$\mathrm{Cl}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)$]
$M_{r}=752.36$
Monoclinic, $P 2_{1} / c$
$a=17.6945$ (19) A
$b=16.1753$ (17) \AA
$c=12.1585$ (13) \AA
$\beta=106.128$ (2) ${ }^{\circ}$
$V=3343.0(6) \AA^{3}$
$Z=4$

Data collection

Bruker APEX-II CCD areadetector diffractometer φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.670, T_{\text {max }}=0.798$ 18615 measured reflections

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0342 P)^{2}\right.$
$+0.4688 P]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.37 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.48 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Pd1-C6	$1.995(3)$	$\mathrm{N} 1-\mathrm{C} 12$	$1.484(3)$
Pd1-N1	$2.184(2)$	$\mathrm{N} 1-\mathrm{C} 13$	$1.493(3)$
Pd1-P1	$2.2264(8)$	$\mathrm{N} 1-\mathrm{C} 11$	$1.499(4)$
Pd1-Cl1	$2.3889(8)$		
C6-Pd1-N1	$82.70(10)$	$\mathrm{C} 6-\mathrm{Pd} 1-\mathrm{Cl} 1$	$171.93(8)$
$\mathrm{C} 6-\mathrm{Pd} 1-\mathrm{P} 1$	$91.36(8)$	$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{Cl} 1$	$91.80(7)$
$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{P} 1$	$170.80(6)$	$\mathrm{P} 1-\mathrm{Pd} 1-\mathrm{Cl} 1$	$94.79(3)$

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 13-\mathrm{H} 13 A \cdots \mathrm{Cl} 1$	0.97	2.75	$3.387(3)$	124

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry with C H distances of $0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$, but each group was allowed to rotate freely about its $\mathrm{C}-\mathrm{C}$ bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on

Figure 1
The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented by circles of arbitrary size.
their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The $U^{i j}$ components of the atoms C23 and C24 were restrained to approximately isotropic behaviour.

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

The authors acknowledge the Natural Science Foundation of Tianjin City, People's Republic of China, for financial support (grant No. 033609011).

References

Bruker (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Iyer, S. \& Ramesh, C. (2000). Tetrahedron Lett. 41, 8981-8984.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wang, H. X., Wu, H. F., Geng, F. Y., Gao R. Q. \& Zhou, H. C. (2006). Acta Cryst. E62, m14-m15.
Weissmann, H. \& Milstein, D. (1999). Chem. Commun. pp. 1901-1902.

